
Automatic Generation of Program Affinity
Policies Using Machine Learning

Ryan W. Moore and Bruce R. Childers

University of Pittsburgh,
Pittsburgh, USA

{rmoore,childers}@cs.pitt.edu

Abstract. Modern scientific and server programs require multisocket,
multicore machines to achieve good performance. Maximizing the per-
formance of these programs requires careful consideration of program
behavior and careful management of hardware resources. In particular,
a program’s affinity can have a critical performance effect. For such ma-
chines, there are many possible affinities for a multithreaded program. In
this paper, we present AutoFinity, a solution to automatically generate
program affinity policies that consider program behavior and the target
machine. The policies are constructed with machine learning and used
online to select an affinity. We implemented AutoFinity on a 4-processor,
48-core machine and evaluated it on 18 multithreaded programs with
varying thread counts. Our results show that in 12 out of 15 cases where
affinity impacts runtime, the policy generated by AutoFinity chose affini-
ties that improved performance versus assignments that do not consider
program and machine behavior.

Keywords: policy generation, runtime adaptation, parallel performance

1 Introduction

Today’s computers for scientific and server workloads are large multisocket, mul-
ticore machines, capable of large amounts of parallelism. The cores in these
machines share multiple resources, such as caches, memory controllers, and in-
terconnects. For a multithreaded program, allocation decisions can be made for
threads to share the hardware resources. Alternatively, threads can be given
exclusive access to resources (e.g., executing with their own last-level cache).
Because resource allocation impacts performance, it must be performed care-
fully and in response to runtime conditions, such as core availability, thread
count, and workload demand. The assignment of program threads to cores, i.e.
program affinity, is one way resources can be allocated.

It is well known that there is no single “best” program affinity to use across
all programs. For example, Fig. 1a shows the program streamcluster ’s region-
of-interest (ROI) execution time when executed with different affinities [1]. The
ROI is the program’s parallel section where the “work” is done. This figure shows
how performance (y-axis) changes with different affinities (x-axis). The program

2 Ryan W. Moore and Bruce R. Childers

Program Affinity
150

200

250

300

350

400

450

500

R
e
g
io

n
-o

f-
In

te
re

s
t

E
xe

c
u
ti
o
n

T
im

e
(s

)

(a) Streamcluster

Program Affinity
85

90

95

100

105

110

115

120

125

R
e
g
io

n
-o

f-
In

te
re

s
t

E
xe

c
u
ti
o
n

T
im

e
(s

)

(b) Swaptions

Fig. 1: Execution times of programs’ region-of-interest across different program
affinities on a 48-core machine (each program has 8 threads)

affinities are sorted by ROI execution time. Streamcluster uses 8 threads on a
48-core AMD machine in these experiments.

For streamcluster (Fig. 1a) the first 5% of affinities achieve an execution time
of around 150 seconds. Beyond this point, quality diminishes, resulting in an ex-
ecution time of about 200 seconds (33% slower). The remaining execution times
steeply increase as the affinity quality continues to diminish. The worst affinity
has an execution time of over 450 seconds! Because so few affinities are good, it
is unlikely that a randomly chosen affinity will result in good performance.

In contrast, swaptions (Fig. 1b) is relatively insensitive to affinity [1]. The
majority of affinities have nearly identical performance. If an affinity was ran-
domly selected, the resulting execution time would likely be good because most
affinities performed well. However, some affinities cause swaptions to perform
poorly. The worst affinity has an execution time of 124 seconds (45% slower
than the best one). Even in this insensitive program, it can be beneficial to
select its affinity because there are cases that should be avoided.

It is important to understand why streamcluster and swaptions behave so dif-
ferently (Fig. 1a and 1b). Certain affinities allow programs to communicate more
quickly (e.g., by sharing cache space). However, sharing caches among threads
can reduce the cache space, causing the working set to overflow the cache. Other
affinities give a thread more cache space, by spreading the threads across sock-
ets and caches, at the cost of communication speed. Cache and communication
demands of a program directly influence which affinities are best.

In a study of PARSEC, streamcluster made frequent use of barriers [1]. Be-
cause affinity affects communication, and thus, the speed at which threads reach
and pass through barriers, streamcluster is affected dramatically by its affinity.
Swaptions does not make much use of barriers or locks [1]. Furthermore, its
working set size is relatively small: A thread’s working set can fit in our experi-
mental machine’s private L2 cache. Thus, swaptions is more resilient to affinity
changes.

Automatic Generation of Program Affinity Policies Using Machine Learning 3

As these figures show, there is diversity in program behavior across affinities.
The runtime resource manager (e.g., operating system) should support the user
and select a well-behaving affinity for the user’s program. Furthermore, selection
should support any thread count as well as never-before-executed programs.

In this paper, we present AutoFinity, an automated system that generates
an affinity policy based on machine learning and training data. The generated
policy is used at runtime to select a program’s affinity. The policy can handle
programs that were not part of the training and/or thread counts that have not
been considered by training. AutoFinity can update its policy as it discovers and
records new information about programs.

A policy chooses a thread-count-independent affinity class, which we call an
affinity hint. The system resource manager (e.g., the operating system) uses a
hint to select an affinity. Affinity hints enable policies and affinity selection across
thread counts in the presence of runtime resource constraints.

We discuss the choices and trade-offs behind AutoFinity’s design. We eval-
uate several design decisions on how AutoFinity can improve program perfor-
mance. The contributions of this paper are:

1. We show the importance of choosing program affinities;
2. We present AutoFinity, an automated, thread-independent solution to select

program affinity;
3. We provide guidelines to find the proper set of hardware performance coun-

ters (HPCs); and,
4. We evaluate AutoFinity and demonstrate its ability to produce policies that

guide affinity settings across a range of programs and thread counts.

This paper is organized in the following way. Section 2 discusses the design and
use of AutoFinity. Section 3 performs an evaluation of AutoFinity. Section 4
discusses related work. Section 5 concludes.

2 The Design of an Affinity Policy Generator

This work focuses on choosing program affinity for CPU/memory-bound pro-
grams. These programs will most benefit from proper affinity selection. There
are several challenges to choosing program affinity. First, the number of affinity
settings is large, as shown in Fig. 2a. With 24 threads there are 1941 settings on a
48-core machine. Selecting program affinities across thread counts is even more
difficult. Second, the selection process must support unknown programs and
yet quickly select a program affinity without evaluating, through trial and er-
ror, program affinities. Finally, affinity selection should handle runtime resource
constraints (e.g., an unavailable socket). We assume at least one available core
per thread and that, if is the system is shared between users, machine resources
(e.g., sockets) are statically partitioned to provide strong isolation.

AutoFinity addresses these challenges. It is built on REEact, a framework for
virtual execution management [13]. AutoFinity automatically builds an affinity
policy to maximize a user-defined metric. The policy is consulted at runtime

4 Ryan W. Moore and Bruce R. Childers

6 12 18 24 30 36 42 48
Thread Count

0

500

1000

1500

2000
P

ro
g
ra

m
A

ffi
n

it
ie

s

(a) Affinity counts

Profiling
Perf.

Counter
Samples

Combine
Options

AutoFinity
Policy

Machine
Learning

Behavior
Database

Action
Table 1

2 3 applications
thread counts

affinities
HPC

sample period

(b) Policy generation steps

Fig. 2: Available affinities and building a policy to help choose one

Launch and
Profile

Perf.
Counters

Use
Policy

Program
Affinity

Hint

Best
Affinity

Runtime
Resource

Availability

Behavior
Database

Seen
Before?

No.

Yes. Use the stored affinity hint.

Resource
Selection

(OS, REEact)

Online
Update

AutoFinity
Policy

1 2 3 4
program

thread count

st
at

ic
 a

ff
in

it
y

H
P

C

sa
m

p
le

 p
er

io
d

Fig. 3: Policy usage steps

on unseen programs to determine an affinity hint, a set of possible affinities
that shall work well. A hint is independent from thread count and is used by
the resource manager (e.g., operating system) as a guide for satisfying runtime
conditions.

Fig. 2b shows the steps to build a policy. First, AutoFinity profiles training
programs for a range of affinities (step 1). This step gathers data that indi-
cates how well particular affinities behave. Program behavior is captured by
hardware performance counters (HPC) gathered during the program’s ROI. The
HPC values are recorded regularly, creating multiple samples. Each sample is
timestamped to facilitate the examination of cross-affinity program behavior
(e.g., two samples each from the beginning of a program’s execution). A sam-
ple observes program behavior over a fixed amount of time. As such, multiple
consecutive sample periods capture a program’s ROI behavior.

The samples are analyzed and transformed into an action table (step 2). The
action table is built to maximize a user-defined metric (e.g., performance). A
row in the action table states what affinity hint (discussed in Sect. 2.1) should
be used if a program exhibits a particular behavior at runtime. The samples are
also archived in a behavior database to build future policies.

Machine learning is used to compact the rows of the action table thus building
the affinity policy while also handling contradictory or missing information in
the table (step 3). Machine learning resolves the conflicts and “holes” through
its statistical analysis.

The generated policy is used at runtime to select an affinity hint. Fig. 3 shows
this process. To use the policy, the program’s thread count must be known. The

Automatic Generation of Program Affinity Policies Using Machine Learning 5

thread count can be discovered on the command line, in an environment variable,
or by monitoring thread creation syscalls.

With the thread count, the behavior database is consulted. If the program
and its thread count have been previously observed then the behavior database
specifies the program’s affinity hint (step 1). Otherwise, the policy is consulted to
obtain the program’s affinity hint. To consult the policy, program behavior must
be observed. A starting affinity will be used and the program’s parallel behavior
will be observed. In this paper, we examine the program’s behavior once, during a
single sample period (step 2). Continuous sampling and adjustment are naturally
supported by our approach, but require a migration cost model (future work).

The sampled HPC values are used by the AutoFinity policy to select an
affinity hint (step 3). The HPC values and selected hint are saved into the
behavior database. The affinity hint can be used to choose a new program affinity.
To use an affinity hint, the program’s resource controller (e.g., operating system),
considers the hint and allocates resources (cores), ultimately choosing a program
affinity for the program (step 4).

Because AutoFinity continuously records program behavior, it can generate
a new policy as program information is accumulated (e.g., when the behavior
database has grown by some percent threshold). If a stored affinity hint corre-
sponds to an old policy, the hint will be removed.

2.1 Affinity Hints

Program affinities explicitly state which cores a program may use (e.g., cores
0–5). For a particular thread count, there may be thousands of possible affinity
choices. It is difficult to directly pick an appropriate affinity, and selecting an
affinity is made harder by supporting all thread counts. To reduce the number of
affinity options that a policy must consider, it is necessary to generalize program
affinities into classes (e.g., affinity hints).

An affinity hint suggests a relationship between cores (e.g., cores should be
distributed across different cache domains). The generalization of program affini-
ties enables techniques which work across thread counts. Using a hint, a pro-
gram’s resource manager will select an affinity based on available resources (e.g.,
sockets) and number of active threads.

There are two requirements for affinity hints. First, affinity hints should not
be overly specific: A hint should be realized at runtime, even under runtime re-
source constraints (e.g., an unavailable processor socket). Second, affinity hints
must capture the effects of core assignments on a thread’s: a) cache space, b) com-
munication, and c) access to main memory (DRAM).

Threads may benefit from a large amount of effective cache space (e.g., to
hold their private working set). The space available to a thread may be nega-
tively impacted by the presence of one or more threads in the same last-level
cache domain (LLC). However, sharing LLCs also allows threads to more quickly
communicate. Regardless of whether cores share one or more levels of cache, a
thread will occasionally have cache misses. It is important to consider the im-

6 Ryan W. Moore and Bruce R. Childers

Affinity Hint Parameter Parameter Description Values Symbol

spreadAcrossSockets Prefer use of many sockets {True, False} S
spreadAcrossLLCs Prefer to not share LLCs {True, False} L
socketOptionGetsPriority Socket preference is priority {True, False} P

Fig. 4: Affinity hint parameters

GetAffinity(resources, threadCount , spreadAcrossSockets, spreadAcrossLLCs,
socketOptionGetsPriority)

1 affs = AllAffinities(resources, threadCount)
2 if spreadAcrossSockets
3 socketSortFunc = PrioritizeByLargerUsedSocketCount
4 else
5 socketSortFunc = PrioritizeBySmallerUsedSocketCount
6 if spreadAcrossLLCs
7 LLCSortFunc = PrioritizeBySmallerLLCOccupancy
8 else
9 LLCSortFunc = PrioritizeByHigherLLCOccupancy

10 if socketOptionGetsPriority
11 prioritizedAffs = Sort(affs, socketSortFunc then by LLCSortFunc)
12 else
13 prioritizedAffs = Sort(affs,LLCSortFunc then by socketSortFunc)
14 return HighestPriority(prioritizedAffs)

Fig. 5: Algorithm for selecting a program affinity

pact of affinity on NUMA accesses. For example, programs may be able to better
exploit memory bandwidth if spread across NUMA domains.

To meet these requirements, the affinity hints have three boolean parameters,
leading to eight possible affinity hints (Fig. 4). The first affinity hint parameter
dictates whether threads should be distributed across sockets (spreadAcrossSockets,
symbol: S). The use of multiple sockets may allow greater memory bandwidth,
by simultaneously employing memory banks. On the contrary, assigning threads
to the same sockets allows better communication in the same memory domain,
potentially avoiding the need to access remote nodes.

The second parameter, spreadAcrossLLCs (symbol: L), controls whether threads
should be assigned to cores that share a LLC. Threads that share a cache may
communicate with each other more quickly or may prefetch data for the shar-
ers. However, sharers may contend for cache space. The third parameter of an
affinity hint (socketOptionGetsPriority , symbol: P) captures whether the sharing
sockets or sharing LLC parameter is more important.

The three parameters define eight hints. We use boolean notation to rep-
resent each hint. For example, SLP specifies spreadAcrossSockets = True,
spreadAcrossLLCs = False, and socketOptionGetsPriority = False. This hint
dictates that application threads share as few LLCs as possible (L)1. The LLCs

1 There is always at most one thread per core.

Automatic Generation of Program Affinity Policies Using Machine Learning 7

are preferred to be on separate sockets (S). The priority in this example hint is
to pack threads onto as few LLCs as possible (P).

With an affinity hint, the OS can consider runtime resource availability to
choose an affinity. This process is shown in Fig. 5. GetAffinity takes a list
of available resources (cores) and the amount needed (threadCount). A list of
affinities that can be made from the available resources is obtained (line 1).
Only affinities that use as many cores as threads are considered. The value of
spreadAcrossSockets is used to prioritize the potential affinities (lines 2–5). If
threads should be spread across sockets then affinities which utilize more sock-
ets are prioritized, otherwise affinities which use fewer sockets will be preferred.
In lines 6–9 spreadAcrossLLCs is similarly processed. A hint which states that
threads should spread across LLCs will prioritize affinities accordingly. Next,
the potential affinities are sorted based on socketOptionGetsPriority ’s value
(lines 10–13). Ties are broken by the secondary priority. The highest priority
affinity (i.e., the one that best matches the affinity hint) is returned (line 14)2.

2.2 Action Table Generation

AutoFinity analyzes program behavior to generate a policy that specifies an
affinity hint for a program under runtime conditions. This process consists of
two steps: 1) building the action table and 2) condensing the table into a policy.

The action table contains observed program behaviors and the affinity hint(s),
that will improve the user-defined performance metric in those situations. It is
built with initial training data: programs in various affinities will have their
behavior (HPC values) recorded. Additional behaviors can be gathered online.

Fig. 6 shows BuildActionTable. This function condenses performance in-
formation (observations) into an action table. BuildActionTable has two
more parameters: condense (a function) and leeway (an integer). Condense re-
solves different performance values coming from similar HPC samples across
multiple programs. This phenomenon is expected to occur occasionally, as pro-
grams may have similar behavior (e.g., cache misses) but different performances.

GetAffinity selects one configuration per affinity hint (assuming a fixed
thread count). Each of the eight affinity hints will correspond to a best match
affinity (eight affinities total). To allow training on affinities which almost would
be selected by GetAffinity, we introduce leeway . Leeway is an integer that
allows an affinity hint to correspond to additional affinities, beyond its best
match. A leeway of 0 means that only the best match affinities are considered.

Leeway is a maximum edit distance between two affinities. A leeway of l
allows a program affinity to be considered as belonging to an affinity hint if,
by moving up to l threads across LLC domains, the affinity becomes identical
to that affinity hint’s best match affinity. The movement of threads across LLC
domains may also move threads across sockets. Therefore leeway also places a
limit on affinity similarity in terms of socket usage.

2 Multiple affinities may tie for the same priority. In this case, the affinities will be
isomorphic and one will be chosen arbitrarily.

8 Ryan W. Moore and Bruce R. Childers

BuildActionTable(observations,condense, leeway)

1 possibilities = ∅, actionTable = ∅
2 for program ∈ observations
3 for samplePeriod ∈ program
4 for aff ∈ samplePeriod
5 behavior = aff.observedPerformanceCounters
6 for destAff ∈ samplePeriod
7 perf = destAff.perf
8 possibilities[behavior][aff][destAff].append(perf)
9 for behavior ∈ possibilities

10 for aff ∈ behavior
11 for destAff ∈ aff
12 affinityHints = AffinityHintFromConf(destAff , leeway)
13 if affinityHints = none
14 continue // Configuration does not map to an affinity hint.
15 consequence = condense(possibilities[behavior][aff][destAff])
16 // An affinity may map to > 1 affinity hints (e.g., due to leeway).
17 for hint ∈ affinityHints
18 actionTable[behavior][aff][hint] = consequence
19 for behavior ∈ actionTable
20 for aff ∈ behavior
21 bestAffinityHint = max(actionTable[behavior][aff])
22 WriteTrainAction(behavior , bestAffinityHint)

Fig. 6: Algorithm for building the action table

For example, an affinity that has six threads share a LLC might be selected
for the hint SLP as its corresponding best match affinity (for 6 threads). With
a leeway of 1, the affinity which causes 5 threads to share a LLC while putting
another thread on a separate socket, would still be considered as corresponding
to SLP because only 1 thread was moved as compared to the best match affinity.

In Fig. 6 the first set of loops (lines 2–8), build up a table, possibilities,
which stores the affinity (aff) and its associated behavior (HPC values). For each
affinity with recorded behavior, alternate affinities (with the same thread count)
are considered. These are considered to be destination affinities (destAff) that
the program could have been in. For each alternative affinity, the performance
metric of the program in that sample period affinity is recorded (perf).

Programs may exhibit similar behavior, and therefore, the first set of loops
accumulate a list of multiple performance metrics (line 8). List items are reduced
into one entry using the condense function (lines 9–18). BuildActionTable
also converts destination affinities to their corresponding affinity hint(s), with
AffinityHintfromConf (the inverse of GetAffinity). After this step, the
action table contains a list of affinities and associated behaviors, affinity hints
that could have applied, and the consequent performance for the affinity hints.

Finally, the action table is ready to be written. In lines 19–22 the action
table is iterated over. For each type of behavior seen under each experienced

Automatic Generation of Program Affinity Policies Using Machine Learning 9

AffinityHintPolicySW(dCacheAccesses, invalidDCacheLinesEvicted ,
exclusiveReadRequestsToL3CacheFromAnyCore, retiredUops)

1 if retiredUops ∈ (BoundLower0,BoundUpper0]
2 if dCacheAccesses < Bound1 and invalidDCacheLinesEvicted < Bound2

3 return SLP
4 if invalidDCacheLinesEvicted < Bound3 and

dCacheAccesses ∈ (BoundLower4,BoundUpper4] and
exclusiveReadRequestsToL3CacheFromAnyCore < Bound5

5 return SLP

6 return SLP

Fig. 7: Example affinity hint policy

affinity, BuildActionTable finds the best affinity hint to be in. These results
are written to a file as a series of rules (WriteTrainAction). Each rule states
an affinity that should be used if a particular behavior is observed. Contradictions
between rules are expected, and may be due to noise and/or different programs
exhibiting similar behavior, yet operating best in different affinity hints.

2.3 Building the Affinity Hint Policy

To convert the action table to a policy that can be consulted at runtime, we
use JRIP from WEKA [4]. JRIP is an implementation of Repeated Incremental
Pruning to Produce Error Reduction (RIPPER), a propositional rule learner
that produces a series of rules for classification. Each rule is a set of conditions
joined by and operators. RIPPER fills in “holes” due to incomplete data (i.e.,
combinations of HPC values that were not observed). It also prunes rules that are
statistically insignificant. We use RIPPER because it creates rules for missing
data, produces simple, human-readable policies, and its rules are easily converted
into a code implementation to use at runtime. We use WEKA’s default settings.

An example policy produced by JRIP is shown in Fig. 7. This policy is used
by swaptions in Sect. 3. For readability, numeric values have been replaced with
constants. The policy’s parameters are the values of four HPCs. The selection
of these counters is discussed later (Sect. 3.1). Depending on the values of these
counters, one of three affinity hints will be selected (SLP, SLP, or SLP).

These affinity hints have been selected by the RIPPER algorithm as the only
necessary affinity hints (i.e., there is no fourth affinity hint that the policy will
select). As more program performance data is obtained and the policy is rebuilt,
additional affinity hints may become available for selection.

3 Evaluation

The previous section described how AutoFinity generates affinity hints, builds
the action table and its policy, and uses its policy. This section presents experi-
mental results for AutoFinity on a diverse set of programs and thread counts.

10 Ryan W. Moore and Bruce R. Childers

Machine Component Component Details

Processors 4 AMD Opteron 6164 HE sockets (48 cores total)
Socket 2 NUMA nodes
NUMA Node 1 L3 cache (LLC)
L3 Cache 5 MiB cache, 6x cores
Core 1.7 GHz, private L1 $ (64 KiB), private L2 $ (512 KiB)
Operating System Linux 2.6.39.1

Fig. 8: Experimental Machine

All evaluations were performed on the machine described in Fig. 8. The
machine is a 48-core AMD Opteron 6164 NUMA system. Each of the four sockets
has 2 NUMA domains (8 NUMA domains total). Each NUMA domain has 6
cores that share an L3. The cores have private L1 and L2 caches. Programs are
executed on an otherwise idle system.

The 18 evaluated benchmarks are culled from PARSEC 2.1 [1], OmpSCR
2.0 [3], and the NAS Parallel Benchmark Suite (NPB) 3.3.1 [7]. The PARSEC
benchmarks use the largest input size (“native”) and the NPB benchmark uses
the “A” input size. Because OmpSCR does not provide official inputs, we con-
figured its programs to execute in a similar amount of time as the PARSEC
benchmarks (about one to two minutes with eight threads).

We use the following PARSEC programs: blackscholes (BS), bodytrack (BT),
canneal (CN), dedup (DD), facesim (FS), fluidanimate (FA), freqmine (FM),
raytrace (RA), streamcluster (SC), swaptions (SW), vips (VP), and x264 (X).
From OMPSCR we use c fft (FT), c fft6 (FT6), c lu (LU), c mandel (MN), and
c md (MD). Lastly, we use dc (DC) from NAS. Some programs (e.g., PARSEC’s
ferret) were not used due to compilation errors, framework incompatibilities, or
short execution times (i.e., a few seconds).

We use AutoFinity to maximize instructions per second (IPC), consequently
minimizing program execution time. We chose this metric because it captures
the rate of application progress and is easy to obtain via hardware performance
monitoring. As we show later, choosing IPC works well to reduce execution time.

Before using AutoFinity to select a program’s affinity hint and program affin-
ity, we remove that program’s data from the training data. This causes the pro-
gram to be treated as a never-before-executed program. The AutoFinity policy
is built on the remaining programs’ data (leave-one-out cross-validation).

To evaluate the quality of the generated policy, we launch the program in a
fixed affinity and observe one sample’s HPC values (as shown in Fig. 3). The
AutoFinity policy uses the HPC values to select an affinity hint. An affinity
is selected from the hint. We then execute the program with that affinity and
observe its ROI runtime. To find average performance, we take the geometric
mean of each program executed under their selected affinity.

By default, previously unexecuted programs and thread counts are executed
under a distributed affinity. A distributed affinity allows the AutoFinity policy to
make better affinity hint suggestions. A distributed affinity spreads a program’s
threads across sockets and LLCs.

Automatic Generation of Program Affinity Policies Using Machine Learning 11

3.1 Choosing and Gathering Hardware Performance Counters

Before an AutoFinity policy can be used, the policy must be built. This requires
profiling programs using HPCs. We use feature selection to choose appropriate
counters automatically. The chosen counters will be measured during the initial
training period as well as online (e.g., to consult the policy). To determine which
counters were the best to help AutoFinity maximize IPC, we profiled several
programs multiple times, collecting HPC values periodically with 60 manually
selected counters.

Our experimental machine supports recording up to four counters at a time.
Additional counters bring dwindling returns in terms of utility. The machine
learning algorithm (i.e., RIPPER) will ignore counters and/or counter values
that are statistically insignificant.

We used WEKA’s CfsSubsetEval feature selection algorithm to choose the
four performance counters that best correlate with our objective metric, IPC.
This method evaluates features by considering the individual predictive ability
of each feature along with the degree of redundancy between them. Features
were selected and “grown” with a greedy search method.

Out of the 60 counters considered, the feature selection process selected the
following features: 1) data cache accesses, 2) invalid data cache lines evicted,
3) exclusive read requests to the LLC from any core, and 4) retired micro-ops.
These HPCs capture well how affinities affect IPC due to:

1. Data cache accesses indicate the memory demands of a program.
2. Cache lines become invalid if a shared line becomes modified by another

core. Therefore, this counter indicates thread communication.
3. Exclusive read requests to the LLC cache also indicates communication and

memory demand. A cache line in the exclusive state may soon become shared
if another thread accesses that line. Exclusive LLC read requests may also
allow one thread to prefetch another’s data.

4. Retired micro-ops counts the number of operations completed by the pro-
cessor. Our experiment machine, an x86-64 processor, executes instructions
that decode into one or more RISC-like operations. Therefore, this metric
captures application performance (IPC).

Lastly, for our techniques to work across a range of thread counts and sampling
period lengths, we normalize each performance counter value to the number of
threads and the number of seconds over which the counter was gathered.

Knowing which four HPCs were necessary to observe and maximize IPC, we
gathered the selected counters and IPCs for each program. The programs are
executed with 8 threads and counters are recorded for each of the 78 program
affinities (8 threads). This step gathers the initial training data.

3.2 Selecting a Discretization Method

To build the action table, the training data must be put into discrete bins.
After discretization, the data is analyzed and the action table is constructed (as
discussed in Sect. 2.2). We consider two methods to discretize the data:

12 Ryan W. Moore and Bruce R. Childers

Method Geo. Mean

equal-width 79.4
equal-frequency 83.1

(a) Impact of the discretization method

Function Geo. Mean

average 80.6
gmean 80.6
hmean 80.6
max 81.5
median 79.4
min 83.1
sum 80.6

(b) Impact of the condense function

Fig. 9: Effects on average program execution time

1. Equal-width binning: Each bin corresponds to a constant range over the
possible values of a HPC. Equal-width binning uniformly covers the range
of observed performance counter values.

2. Equal-frequency binning: Bin widths are uneven to allow higher resolution
where HPC values are most concentrated. Bins have the same item counts.

While we tried a range of numbers, we found that five bins for each method
worked well, without making individual bins too wide or small. WEKA’s equal-
width discretization supports the automatic adjustment of the number of bins
to be data-appropriate. We enabled this feature. Equal-frequency binning does
not support such an option. In our experience, the adjustment is influenced by
the number of requested bins.

To evaluate the discretization method, we perform cross-validation. The geo-
metric mean of the program execution times is computed. Because the method of
discretization is not the only adjustable parameter, we fix the other parameters
(e.g., the condense function) to their best values (described later).

Fig. 9a shows the results of varying the discretization method. The results
show that equal-width binning improves the geometric mean by approximately
5% (a mean of 79.4s versus 83.1s). Equal-width binning does better because
equal-frequency binning creates very wide bins to allow for occasional narrow
bins. However, a policy built with equal-frequency binning may be unable to later
differentiate between HPC values which, though the difference between them is
large, are grouped into the same wide bins. Thus, we conclude that equal-width
binning is the best discretization method.

3.3 Selecting a Condense Function

We considered multiple condense functions to determine which method works
best. The condense function combines performance measures from similar behav-
ing samples gathered from the same affinity. Similar to Sect. 3.2, we set the other
parameters to their best values. The condense function can be: a) arithmetic
mean (average), b) geometric mean (gmean), c) harmonic mean (hmean),
d) max, e) median, f) min, and g) sum.

Automatic Generation of Program Affinity Policies Using Machine Learning 13

For example, suppose that program a is similar to b in that both have high
data cache miss rates among other counter values. After analyzing their perfor-
mance in different affinities, it is determined that both programs would execute
fastest in affinity hint h. However, due to differences in program behavior, a will
obtain an IPC in h of 2, whereas b will obtain an IPC of 1.5.

During action table and policy construction, AutoFinity must consider the
expected IPC of a program, c, running under hint h, that is similar to a and b
(e.g., c is a not-yet-encountered program). The action table could consider c to
have a runtime of 2 (max), 1.5 (min), or 1.75 (average). The condense function
determines the expected value.

Fig. 9b shows the results of varying the condense function. The best func-
tion, median, has a geometric mean of 79.4s. The worst condense function is
min, with a geometric mean of 83.1s, about 5% worse than median’s result.
min results in the worst performance because it creates a pessimistic policy. It
penalizes types of behavior which are exhibited by multiple programs (e.g., if
three programs exhibit the same behavior, the worst performing one is the only
one whose performance will be considered).

Although min makes a pessimistic policy, and max makes an overly optimistic
one, median function is balanced and works well. Similarly, each of the means
had good behavior.

3.4 Other Parameters

There are three other parameters for AutoFinity: 1) whether to normalize IPCs,
2) whether to include affinity-insensitive programs in the training data, and
3) leeway.

A program’s IPC can be normalized to the smallest IPC recorded for that
program. This allows for easier comparison of IPCs across programs. For exam-
ple, if using a particular affinity hint can boost a program’s IPC by 0.1, then
this may be a relatively minor performance increase (e.g., 3% if the original
IPC is 3.0) or a relatively larger increase (e.g., 10% if the original IPC is 1.0).
Normalization allows these trends to be captured.

However, using the best parameter settings for the other policy parameters
(e.g., the best condense function, the best discretization method) causes normal-
ization to have no significant benefit. Nevertheless, we normalize IPCs because
it did, for suboptimal parameter settings, result in a better policy.

The second parameter is whether affinity-insensitive programs are included
in the training data. We define program insensitive programs as programs whose
ROI execution time standard deviation is less than 1% of the program’s average
execution time across all affinities. Intuitively, programs whose behavior is in-
sensitive to affinity contain no useful information to guide affinity selection. At
worst, the data from insensitive programs may dilute important information.

As with IPC normalization, we found that using the best possible parameter
settings causes the removal or inclusion of affinity-insensitive programs to make
little difference (less than 1%). We did find it was occasionally beneficial for less

14 Ryan W. Moore and Bruce R. Childers

CN+MN+RA+ BS +DD+ FT +MD+SW+ VP + BT + FA +FM+ FS +DC+ X +FT6+SC+ LU
0

2

4

6

8

10

12

14

16

18

U
n
iq

u
e

B
e
h
a
v
io

rs
O

b
s
e
rv

e
d

in
th

e
P

ro
g
ra

m

0

10

20

30

40

50

60

70

C
u
m

u
la

ti
v
e

U
n
iq

u
e

B
e
h
a
v
io

rs

Unique Behaviors Observed in the Program

Cumulative Unique Behaviors

Fig. 10: Cumulative and per-program discretized behavior coverage

optimal settings. Therefore in our later evaluation, programs that are affinity
insensitive are removed from the training data.

Lastly, we set leeway to 2. This leeway setting was determined experimentally
(not presented due to space constraints). For 8 threads, this value resulted in 31
possible destination affinities while building the initial AutoFinity policy.

3.5 Program Behavior Coverage

Exposure to diverse program behavior allows the action table and policy to
appropriately respond to unseen programs. To gain insight into this diversity,
we analyzed program behavior across all possible affinities for 8 threads.

We define a program as exhibiting a behavior, b, if during the training pro-
cess it produces a discretized HPC sample that is equal to b. Each program, p,
produces a set of unique behaviors, Bp, where Bp = {b0, b1, ...}. Examining the
discretized behaviors, we can determine the diversity of a program (|Bp|) and
whether programs exhibit the same number of behaviors.

Other questions that we sought to address include whether some programs
have more diverse behavior than others (i.e., whether |Bpi

| < |Bpj
|), and what

is the effect of a program’s behavior on the cumulative training information.
Figure 10 shows how coverage is influenced by the programs. The figure’s

x-axis is sorted by the number of unique behaviors in each program. It has two
plots. The “+” line shows the number of unique behaviors in each program,
while the “×” line shows the number of cumulative behaviors as the programs
are added (left to right).

From the figure, we broadly place each program into one of two categories:
1) programs that have few unique behaviors and 2) programs that exhibit a
diverse range of behavior. Approximately half of the programs, those before and
including FM (freqmine), have few behaviors, and therefore, exhibit consistent

Automatic Generation of Program Affinity Policies Using Machine Learning 15

behavior across their lifetime and affinities. This is shown by the low height of
the “unique behaviors” line. Even though 12 programs fall into this category,
each with an average of 2 unique behaviors per program (24 total), there are only
15 unique behaviors between them (i.e., at the point on the x-axis for FM, the
cumulative unique behaviors line has a y-value of 15). Each program, therefore,
contributes on average only 1.25 unique behaviors to the cumulative training
data (15 behaviors over 12 programs = 1.25 behaviors per program).

The other programs (after FM) have great diversity. This diversity may be
due to phases and/or sensitivity to affinity. These 6 programs contribute 49
unique behaviors to the training data, for an average of more than 8 unique
behaviors per program. C lu has the most unique behaviors. It exhibits 18 unique
behaviors and contributes 15 to the cumulative list. Streamcluster has the second
highest number of unique behaviors (14) and contributes 5 unique behaviors.

From this data, we believe that only a few training programs (i.e., those that
exhibit a range of behavior) may be necessary to produce a good policy.

3.6 Performance Evaluation

Next, we evaluate how the policies from AutoFinity choose affinity hints for
unknown programs. We compare the execution times of the programs using the
AutoFinity-selected affinities against two static policies:

1. Packed : This policy places threads together, causing them to share LLCs
whenever possible, and preferring to use as few sockets as possible (SLP).

2. Distributed : This policy distributes threads uniformly across sockets and
LLCs (SLP).

AutoFinity uses a leeway of 2 and affinity insensitive programs are removed from
the training data. IPCs from a program are normalized to the slowest IPC from
that program. HPC monitoring uses a sample size of 10 seconds for the four
counters described in Sect. 3.1. Lastly, the condense function is median.

Fixed Thread Count Evaluation First, we compare the runtime of each
program with 8 threads under the affinities chosen by AutoFinity. Training data
also consisted of programs with 8 threads. Figure 11 shows these results.

The y-axis is ROI execution time (lower is better). The x-axis shows each
program, with the geometric mean at the far right. Subscripts indicate thread
count. For each program, three bars are shown. The first bar is the runtime
under a packed affinity. The second bar is runtime under a distributed affinity.
Finally, the third bar is runtime for the affinity chosen by the AutoFinity policy.

Some programs are insensitive to the policy. Blackscholes, freqmine, c md,
c mandel, raytrace, swaptions, vips, and x264 are not significantly affected by
affinity. To a lesser extent, fluidanimate is insensitive too. However for most pro-
grams, the affinity is important. Five of the programs prefer a packed affinity

16 Ryan W. Moore and Bruce R. Childers

B
S
8

B
T
8

C
N

8

D
C

8

D
D

8

F
A
8

F
M

8

F
S
8

F
T
8

F
T

6
8

L
U

8

M
D

8

M
N

8

R
A
8

S
C

8

S
W

8

V
P
8

X
8

G
e
o
.

M
e
a
n

0

50

100

150

200

R
u
n
ti
m

e
(s

)

Packed

Distributed

AutoFinity

Fig. 11: AutoFinity, packed, and distributed ROI execution times for 8 threads

(bodytrack, canneal, dedup, c fft, streamcluster). These programs’ threads com-
municate and/or share data. For bodytrack, dedup, and c fft, AutoFinity selects
an affinity that performs nearly as good or just as good as the best static policy.

The AutoFinity policy selects a poor affinity hint for streamcluster (SLP).
The result is due to streamcluster ’s unique behavior. As shown in Fig. 10 (dis-
cussed in Sect. 3.5), streamcluster has the second highest number of unique
behaviors. Because streamcluster exhibits such different behavior (as compared
to the other programs), AutoFinity did not build an appropriate rule to handle
programs like it. Additional training data (i.e., from streamcluster or programs
which exhibit behavior like it) would, we believe, allow the AutoFinity policy to
make better affinity hint selections.

Dc, facesim, c fft6, and c lu prefer a distributed affinity. These programs
have large memory footprints, as evidenced by the distributed policy preference.
For dc, c fft6, and c lu, AutoFinity chooses an affinity hint and program affinity
which performs just as well as the distributed static policy.

In 7 out of 9 cases involving affinity sensitive programs, AutoFinity chose a
program affinity which performed nearly as well or just as well as their preferred
static policy. The geometric mean (last set of bars in Fig. 11) shows that Auto-
Finity has a slight runtime advantage over either static policy. The advantage
to AutoFinity is the user does not have to manually select the proper affinity.

We also compared AutoFinity’s performance against an oracle policy, built
through exhaustive experimentation. On average, AutoFinity achieved 96% of
the performance (ratio of the oracle and AutoFinity’s geometric mean). For three
programs, it tied with the oracle policy (dc, c fft6, c lu).

Automatic Generation of Program Affinity Policies Using Machine Learning 17

D
C

4

D
D

4

D
C

8

D
D

8

L
U

8

S
C

8

C
N

1
6

D
C

1
6

D
D

1
6

F
S
1
6

L
U

1
6

S
C

1
6

C
N

2
4

L
U

2
4

S
C

2
4

G
e
o
.

M
e
a
n

0

50

100

150

200

250

300

350

400

450

R
u
n
ti
m

e
(s

)

X X X X X ! X X X ! X ! X X X

Packed

Distributed

AutoFinity

A “X” (win) is when AutoFinity is within 1% or better than the best static policy.

Fig. 12: AutoFinity and static policy ROI execution time comparisons across
programs and thread counts for interesting cases

Varying Thread Count Next, we evaluate AutoFinity on each program with
a range of thread counts (4, 8, 16, and 24 threads)3. Training data was obtained
only for a thread count of 8. To test AutoFinity on a program, we remove that
program from the training data before building the AutoFinity policy.

As previously shown, some programs have behavior that is not affected by
affinity. Many programs, however, do show widely variable behavior. Affinity
insensitivity is even sometimes thread count dependent. We deem the cases that
have at least a 20% ROI runtime difference between their packed and distributed
affinities, as “interesting cases.” Interesting cases have a potential for bad or
good affinity choices. Due to space constraints, we show and discuss only the
interesting cases across the thread counts. There are 15 interesting cases.

Figure 12 shows the interesting cases. The x-axis shows the program’s name
with subscripts indicating thread count. The y-axis is the runtime of the pro-
gram’s ROI (lower is better). The first bar is the runtime for the packed affinity,
the second bar is the runtime for the distributed affinity, and the third bar is
the runtime of the program under the affinity chosen by AutoFinity.

The figure is annotated to indicate whether AutoFinity chooses an affinity
that is within 1% of the best static policy. Wins (i.e., when AutoFinity is within
1%) are marked by “X.” If AutoFinity does not have a performance within 1%
of the best static policy, we mark the graph with “!.”

Dedup (DD) is an interesting program, appearing 3 times (4, 8, and 16
threads). Each time, dedup does best under a packed affinity. Because it is a
pipeline parallel program, there is communication between threads as data is

3 Facesim and fluidanimate do not support executing with 24 threads.

18 Ryan W. Moore and Bruce R. Childers

passed from stage to stage [1]. Therefore, it is natural that dedup would benefit
from packed affinities, which cause threads to share cache space. In each case,
the AutoFinity policy chooses an appropriate program affinity, and thus allowing
dedup to execute quickly even though the AutoFinity policy was not built on
data obtained from observing dedup.

Dc also appears 3 times in Fig. 12 (using 4, 8, 16 threads). Each time, it
prefers a packed affinity. If dc is executed with 4 threads, AutoFinity chooses an
affinity hint that performs better than the best static affinity (SLP).

Streamcluster (SC) is another interesting case. If run with 8 threads (SC8),
it benefits most from a packed affinity. Unfortunately, AutoFinity chooses an
affinity whose runtime is similar to the distributed affinity’s runtime. If using 16
threads (SC16), streamcluster prefers a distributed affinity. AutoFinity chooses
an affinity which performs almost like (in terms of execution time) the preferred
distributed affinity, but is not within 1%, and therefore, it is not classified as
a win. If 24 threads are used (SC24), streamcluster still prefers a distributed
affinity. AutoFinity actually beats both the packed and distributed policies and
chooses an affinity hint that performs better than either (SLP).

Finally, in facesim (FS16) the packed affinity is almost 75% slower than the
distributed affinity. Unfortunately, in this case AutoFinity chooses an affinity
hint that behaves like the packed affinity. Additional behavior data would im-
prove AutoFinity’s hint selection.

Overall, AutoFinity chooses a good affinity in most cases (12 out of 15 cases).
It even beats the distributed and packed static policies in two cases. These results
across thread counts show that AutoFinity policies and affinity hints work well.

4 Related Work

Wang et al., like our work, use machine learning to choose affinities [14]. Their
approach requires a special compiler or dynamic binary instrumentation to ex-
tract features. Their offline approach requires a single-threaded execution of a
previously-unseen program. Fengguang et al. also use dynamic binary instru-
mentation to choose affinities. They use an analytical model and gathered in-
formation to predict program performance in various thread settings [9]. We do
not require dynamic binary instrumentation or special training runs before an
affinity can be chosen.

Tam et al. [10] propose a system that uses hardware performance counters
to decide thread affinity settings. Their work requires hardware support to track
data sharing on a cache line basis. Our system supports responding to runtime
resource availability by providing thread-count-independent affinity hints. We
present guidelines for using our techniques on new systems, by discussing fea-
ture selection, sensitivity studies, and making use of more generally available
performance counters. Our techniques adapt online and are more generic, sup-
porting multiple performance metrics (not just IPC). Evaluating AutoFinity on
other performance metrics is future work.

Automatic Generation of Program Affinity Policies Using Machine Learning 19

Klug et al. [5] propose autopin, a tool which uses hardware performance
counters to choose thread affinities. Autopin uses a set, evaluate, iterate strat-
egy: threads are given an affinity and the program behavior is measured. Another
affinity is then evaluated and eventually the tool chooses an affinity. They ulti-
mately reach well-performing affinity settings. Radojković et al. have a similar
approach (e.g., resource monitoring, trial and error) but focus on network appli-
cations [8]. Our approaches decide on an affinity after a single sample.

AbouGhazaleh et. al use machine learning to build a runtime policy that
examines hardware performance counters. However, their work is applied to em-
bedded single-core systems, and focuses on optimizing energy-delay product [8].

Our techniques currently assume program behavior with a particular thread
count does not change across invocations. Some programs have changing be-
havior across inputs. Techniques exist to model and predict how an input will
affect a program’s behavior [12]. Such techniques could be integrated into the
AutoFinity flow, and enable the reuse of learned program behavior.

Under AutoFinity, programs whose behavior is not stored in the behavior
database may dynamically change their program affinities (i.e., after sampling
an affinity hint is chosen). For some programs, dynamic affinities can cause poor
NUMA behavior. Blagodurov et al., propose dynamic techniques to improve
NUMA page placement, thus solving this potential issue [2]. Terboven et al. also
examined data placement and proposed OpenMP-based solutions [11].

Lee et al. discuss why a program might use different thread counts across
invocations [6]. They provide an automatic system to change program thread
count. This motivates the need for our work.

Although some programs’ were insensitive to the affinity setting, Zhang et al.
show how to modify programs to better share caches [15]. With their techniques,
programs can have improved performance. The modified programs will then, we
expect, require good affinity selection like that provided by AutoFinity.

5 Conclusion

Program affinity can have a large impact on performance; it is important to select
the “right” affinity to maximize performance. In this paper, we present Auto-
Finity, a method to automatically generate a policy that can select at runtime
the affinity of a previously unknown program. AutoFinity uses machine learn-
ing to derive thread-count-independent policy from training data. We evaluate
AutoFinity on previously unknown programs, across a range of thread counts
on which AutoFinity may not have been trained. In 12 of 15 cases where affinity
has a significant impact on performance, we show that AutoFinity’s selection
performs within 1% of, or better than, fixed assignments that do not consider
program behavior. In two of these cases, AutoFinity outperforms the fixed as-
signments. AutoFinity is a practical and successful solution to the problem of
choosing program affinity.

20 Ryan W. Moore and Bruce R. Childers

References

[1] Bienia, C., Kumar, S., Singh, J.P., Li, K.: The PARSEC benchmark suite: Char-
acterization and architectural implications. In: Proc of the 17th Int’l Conf on
Parallel Architectures and Compilation Techniques. (October)

[2] Blagodurov, S., Zhuravlev, S., Dashti, M., Fedorova, A.: A case for NUMA-aware
contention management on multicore systems. In: Proc of the 2011 USENIX Conf
on USENIX Annual Tech Conf. USENIXATC’11, Berkeley, CA, USA, USENIX
Assoc

[3] Dorta, A., Rodriguez, C., de Sande, F.: The OpenMP source code repository.
In: Parallel, Distributed and Network-Based Processing, 2005. PDP 2005. 13th
Euromicro Conf on. (February)

[4] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. (November)

[5] Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin automated optimization
of thread-to-core pinning on multicore systems. In Stenstrm, P., ed.: Trans on
High-Performance Embedded Architectures and Compilers III. Volume 6590 of
Lecture Notes in Comp Sci. Springer Berlin / Heidelberg (2011)

[6] Lee, J., Wu, H., Ravichandran, M., Clark, N.: Thread tailor: dynamically weaving
threads together for efficient, adaptive parallel applications. In: Proc of the 37th
annual Int’l Symp on Computer architecture. ISCA ’10, ACM

[7] NAS Parallel Benchmarks Team: NAS parallel benchmarks 3.3.1 (2009)
[8] Radojković, P., Čakarević, V., Verdú, J., Pajuelo, A., Cazorla, F.J., Nemirovsky,

M., Valero, M.: Thread to strand binding of parallel network applications in
massive multi-threaded systems. In: Proc of the 15th ACM SIGPLAN Symp on
Principles and Practice of Parallel Programming. PPoPP ’10, ACM

[9] Song, F., Moore, S., Dongarra, J.: Analytical modeling and optimization for
affinity based thread scheduling on multicore systems. In: Cluster Computing
and Workshops, 2009. CLUSTER ’09. IEEE Int’l Conference on

[10] Tam, D., Azimi, R., Stumm, M.: Thread clustering: sharing-aware scheduling on
SMP-CMP-SMT multiprocessors. In: Proc of the 2nd ACM SIGOPS/EuroSys
European Conf on Comp Systems 2007. EuroSys ’07

[11] Terboven, C., an Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread
affinity in openmp programs. In: Proc of the 2008 workshop on Memory access
on future processors: a solved problem? MAW ’08, ACM

[12] Tian, K., Jiang, Y., Zhang, E.Z., Shen, X.: An input-centric paradigm for pro-
gram dynamic optimizations. In: Proc of the ACM Int’l Conf on Object oriented
programming systems languages and applications. OOPSLA ’10, ACM

[13] Wang, W., Dey, T., Moore, R.W., Aktasoglu, M., Childers, B.R., Davidson, J.W.,
Irwin, M.J., Kandemir, M., Soffa, M.L.: REEact: a customizable virtual execution
manager for multicore platforms. In: Proc of the 8th ACM SIGPLAN/SIGOPS
Conf on Virtual Execution Environments. VEE ’12, ACM

[14] Wang, Z., O’Boyle, M.F.: Mapping parallelism to multi-cores: a machine learning
based approach. In: Proc of the 14th ACM SIGPLAN Symp on Principles and
practice of parallel programming. PPoPP ’09, ACM

[15] Zhang, E.Z., Jiang, Y., Shen, X.: Does cache sharing on modern cmp matter
to the performance of contemporary multithreaded programs? In: Proc of the
15th ACM SIGPLAN Symp on Principles and Practice of Parallel Programming.
PPoPP ’10, ACM

